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s2,(2) realizations for Kepler and oscillator potentials and 
q-canonical transformations 
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Ahstraet. The realizations of the Lie algebra corresponding to the dynamical s y m h y  group 
SO(2. 1) of the Kepler and oscillator potentials are 9-deformed. The q-canonical transformation 
connecting hvo realizations is given and a general definition for the q-caoonicd transfomation is 
deduced. A 9-Schriidinger equation for a Kepler-like potential is obtained from the q-oscillator 
schr(ldinger equation. The enew specmm and the ground-state wavefunction are calculated. 

1. Introduction 

There are mathematical and physical aspects of q-deformations [I]. From the mathematical 
point of view, one usually demands that the q-deformed algebra be a Hopf algebra The 
physical point of view is somehow less restrictive: obtaining the underlying undeformed 
picture in the q -+ 1 limit is the basic condition. Hence, q-deformation of a physical 
system is not unique. For example, the harmonic oscillator which is the most extensively 
studied system has several q-deformed descriptions [2]. q-deformation of physical systems 
other than the oscillator are not well studied as most of the concepts of classical and 
quantum mechanics become obscure after q-deformations. For example, q-deformed change 
of phase-space variables leaving basic q-commutation relations invariant is presented in 131, 
and a canonical transformation connecting q-oscillators is studied in [4]; but q-canonical 
transformations establishing relationships between different potentials are not known. 

The purpose of this paper is to present a q-canonical transformation and to define a q- 
deformed Kepler-like potential in a consistent manner with the q-oscillator. The possession 
of the same dynamical symmehy group SO(2,l) by the harmonic oscillator and the Kepler 
problems will guide us. 

In general, the phase-space realizations of the Lie algebras corresponding to a dynamical 
symmetry group which are relevant to different physical systems are connected by canonical 
transformations. We generalize this connection to define q-canonical transformations. We 
hope that the procedure may also help to define new q-deformed potentials from the known 
ones. 

In section 2 we review the known relation between the undeformed Kepler and oscillator 
problems. In section 3 we present q-defomations of two realizations of d(2) (which is 
the Lie algebra of SO(2,l)) relevant to the Kepler and oscillator potentials. We define the 
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q-canonical transformation connecting two realizations. We then give a general definition 
of q-canonical transformation. In section 4 we define a q-Schrodinger equation for a 
Kepler-like potential from the q-Schrodinger equation of the q-oscillator by a coordinate 
change. Finally, we fix the energy spectrum of the q-oscillator, and find the ground-state 
wavefunction and then obtain the energy spectrum and the ground-state wavefunction of 
the q-deformed Kepler problem. 

2. Review of the relations between Kepler and oscillator potentials 

It is well known that SO(2, l )  is the dynamical symmetry group of the radial parts of the 
Schrodinger equations of the Kepler and the harmonic oscillator potentialst. 

In one (space) dimension the phase-space realizations of the corresponding Lie algebra 
sZ(2) relevant to the Kepler and the harmonic oscillator problems are given by 

d F Dayi and I H Dum 

H = 2px 
x + = - f i x  

-1 x- = - p=x 
.Jz 

and 
1 

Lo = up. + - 2 

with 

px - x p  = i puu - up, = i. 
The above generators satisfy the usual commutation relations 

[H, X*l= i 2 i X I  
[Lo, L*] = H i L *  

[X+, X-] = -iH 
[L+, L-] = -iLo. 

The eigenvalue equation for the Kepler Hamiltonian 

(3) 
(4) 

which is equivalent to 

is solved by diagonalizing the operator 

On the other hand, the solution of the oscillator problem is simply obtained by 
diagonalizing the operator 

t See far example IS] 
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Classically (i.e. before the h-deformation) the Kepler and oscillator phase-space variables 
are connected by the canonical transformation 

2 p = - .  PU 
2u 

x = u  

This type of canonical transformations is also employed for solving the H-atom path integral 
[6]. In fact, since the path integrations make use of the classical dynamical variables, the 
canonical point transformations are routinely used to transform the path integral of a given 
potential into a solvable form. 

The relation between the Schrodinger equations corresponding to the one-dimensional 
oscillator and Kepler type potentials is as follows. 

The Schrodinger equation of the one-dimensional oscillator 

is uansformed by the coordinate change suggested by (5 )  

u = f i  

into 

2pdx2 x 
with 

1 
*=-4 f i ’  

(7) 

The energy E and the frequency w2 of the oscillator play the role of the coupling constant 
p2 and the energy EK of the Kepler problem: 

E o  
8 - 4  
- - -(2n t 1) = -p 

(11) 2 EK = - ~ U J  /8. 

Equation (8) is equivalent to the one-dimensional Kepler problem with an extra potential 
barrier -(3/32p)/xz or to the two-dimensional Kepler problem with ‘angular momentum’ 
pi = -3/16. 

If we obtain o from (IO) as 

482 o(8) = -- 
2n t I 

and substitute it into ( l l ) ,  we obtain the Kepler energy 

3. q-canonical transformation between the Kepler and oscillator realizations of sZq(2) 

3.1. q-deformation of the Kepler realization 

To q-deform the algebra of the generators (I), we prefer to q-deform the commutation 
relation between p and x (we use the same notation for the q-deformed and undeformed 
objects): 

(14) x p  - qpx = -i& 
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but keep the functional forms of H and X* the same as the forms given in (1). The 
q-deformed commutation relations are then given by [7] 

d F Dayi and I H Duru 

H X -  - q X - H  = - 2 i A X -  
1 1 

H X +  - - X + H  = 2i- X +  
4 47 

-1 x+x- -q*x-x+ = -&(I + q ) H .  2 
Note that after rescaling the above generators: 

and setting 4 = r2 one arrives at 
H X -  - r 2 X - H  = - r X -  
r 2 H X +  - X + H  = r X +  
X + X -  - r 4 X - X +  = r H 2 

which is Witten’s second deformation of si(2) [SI. 

3.2. q-deformation of the osdlator realization 

We would like to q-deform the generators given in (2). which are relevant to the oscillator 
problem in a consistent manner with the deformation of the Kepler realization (1). 

We define the q-deformed commutation relation of p .  and U as 

UP, - & P,U = ib(q) (17) 
and f i x  b(4) by requiring that the commutation relations of the q-deformed algebra of the 
generators (2) to be the same as (15). We rescale LO and L+: 

with 

and fix b(q) as 

The q-deformed algebra then becomes 
LoL- - qL-Lo = -2i&L- 

L ~ L +  - -L+Lo 1 = 2i-L+ 1 
d5 9 
-i 
2 

L+L- -qZL-L+ = --&(I +q)Lo 

which is the same as the s1,(2) algebra of the Kepler problem (15). 
Note that before 4-deformation, d(2)  algebra (4) admits three different choices for Lo: 

(19) 
i I 1 

Lo = up.  -!- - 2 
Lo = p,u - - Lo = -,(UP” + P U U ) .  2 
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In the q-deformed case, however, if we require the generators to be independent of q (except 
an overall factor), the ordering degeneracy in (19) is removed, that is, LO can only take the 
form given in (2). 

3.3. q-canonical transformtion 

Let us introduce a transformation similar ta (5): 

Then, the q-commutation relation (14) yields 

which is consistent with (17). Indeed, by virtue of (17) the above commutation relation 
becomes 

L ( u ~ u  - &P.U + ib&) = -i& 
1 +a 

which is again equal to (17). 
Now, we are ready to define the q-canonical transformation. 

Defnrition. We wish to keep the phase-space realizations of the q-deformed generators to 
be formally the same as the undeformed generators of the dynamical symmetry group. We 
then define the transformation x ,  p + U, pu to be the q-deformed canonical aansformation 
if the following two conditions are satisfied. 

(i) Algebras generated by the realizations Xi (x, p )  and Li (U, p u )  are the same. 
(ii) The q-commutation relations between p and x ,  and p .  and U are preserved. 
In accordance with the above definition, we conclude that (20) is a q-canonical 

By rescaling the q-canonical variables p, x and p” ,  U as 
transformation. 

and setting 

4 -+ 9-z 

the q-commutators (14) and (21) become 
2 p x  - q  xp = i 

p,u - qupu = i. 

In the rest of this paper these q-commutation relations will be used. 
There is another definition of the q-deformed canonical transformation [4]: phase-space 

coordinates are transformed under the condition that the q-commutators remain invariant. 
However, our condition in the definition of the q-canonical transformation is to obtain, in 
a suitable limit, the undeformed mappings connecting different potentials which possess 
the same dynamical symmetry. Thus, our definition of the q-canonical transformation is 
dynamics-dependent, i.e. the basic q-commutators are potential-dependent (22) and (23). 
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4. q-canonical transformation from q-oscillator Schrodinger equation to q-Kepler 
problem 

Introduce the q-deformed derivative D&) 191: 

0 F Dayi and I H Dum 

In terms of this definition one can show that 

Dq(u)lf(u)g(u)I = Dq(u)f(u)g(u) + f (qu)Dq(u)g(~) .  
Since the q-deformed derivative D&) satisfies 

Dq(u)u - quD,(u) = I 
we can set 

P. =io&) 
which is consistent with (23). 

equation for the q-oscillator: 
In terms of this q-differential realization one can obtain the q-deformed Schriidinger 

where 

Obviously, the choice (27) is not unique?. The conditions to be satisfied are 

lim cq(u)  = U 
'7+ I 4-1 ' 7 -  ' 

U = JL 

Dq(u) = (1 + q ) f i J ; q l ( x ) .  

l imw -0 

We adopt the change of variable suggested by (20) 

The q-derivative D,(u) transforms as 

Dq2(x) satisfies 

Dqz (x )x  - q2x D92 ( x )  = 1 (30) 
hence in accordance with (22) it can be identified with -ip. Therefore, (28) and (29) are 
equivalent to the q-canonical wansformation (20). The q-Schrodinger equation (26) then 
becomes 

with 

4 y W  = P q ( f i ) .  (32) 
To remove the term linear in D&) in (31) we introduce the ansae 

4'70) = XUP'7(X). (33) 

t For an example see [IO] and the references given therein. 
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Choosing 

and by multiplying (31) from the left by l / ( l  + q) *x ,  we obtain 

(34) 
which is the q-deformed Schrodinger equation of the Kepler potential with an extra potential 
harried. 

The q-oscillator energy E ,  is dependent on o and q.  From the identification of the 
coupling constant 

- p ' = E 9  (35) 
we can solve o in terms of @ and q, as w(p,  q). Hence, in terms of the solutions of the 
q-Schrodinger equation for q-oscillator (26) we can obtain the solutions of 

where 

is the q-deformed analogue of the energy spectrum of the Kepler problem. 

5. Energy spectrum and ground-state wavefunctions 

A general solution of the q-Schrodinger equation of the q-deformed oscillator (26) is not 
known. We f ix  the energy spectrum to be of the conventional form [2]: 

1 - quu'2n+l) 

1 - q  ' 
Epn = [o(2n + 1 ) 1 4  = (38) 

Substituting the above energy spechum into (35) we obtain 

The energy spectrum (37) of the q-Kepler problem then becomes 

{ 1 - [(I - q)(i  + pz)]109/2(2n+1) 1 2 .  (40) 
4 P  E& = 

2( 1 - q2)2 

We would now like to build the ground-state wavefunction of the q-oscillator. With 
this aim we introduce 

which is defined to satisfy 

D9(z)eq(z2) = 2ze9(z2). 

t For a study of the qdefomed H-atom in a manner unrelated to the q-ascillator, see I l l ]  
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Hence, the equation for the ground state of the q-oscillator 

0 F Dayi and Z H Dum 

possesses the solution 

By introducing the above definition into (32) and using (33) we obtain the ground-state 
wavefunction of the q-Kepler problem: 

which corresponds to the energy EKO. 
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