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Abstract. The realizations of the Lie algebra corresponding to the dynamical symmetry group
S0(2, 1) of the Kepler and oscillator potentials are g-deformed. The ¢-canonical transformation
connecting two realizations is given and a general definition for the g-canonical transformation is
deduced. A g-Schrédinger equation for a Kepler-like potential is obtained from the g-oscillator
Schrédinger equation. The energy spectrum and the ground-state wavefunction are calculated.

1. Introduction

There are mathematical and physical aspects of g-deformations [1]. From the mathematical
point of view, one usually demands that the g-deformed algebra be a Hopf algebra, The
physical point of view is somehow less restrictive: obtaining the underlying undeformed
picture in the g — I limit is the basic condition. Hence, g-deformation of a physical
system is not unique. For example, the harmonic oscillator which is the most extensively
studied system has several g-deformed descriptions [2]. g-deformation of physical systems
other than the oscillator are not well studied as most of the concepts of classical and
quantum mechanics become obscure after 4-deformations. For example, g-deformed change
of phase-space variables leaving basic g-commutation relations invariant is presented in [3],
and a canonical transformation connecting g-oscillators is studied in {4]; but g-canonical
transformations establishing relationships between different potentials are not known.

The purpose of this paper is to present a g-canonical transformation and to define a g-
deformed Kepler-like potential in a consistent manner with the g-oscillator. The possession
of the same dynamical symmetry group SO(2, 1) by the harmonic oscillator and the Kepler
problems will guide us.

In general, the phase-space realizations of the Lie algebras corresponding to a dynamical
symmetry gtoup which are relevant to different physical systems are connected by canonical
transformations. We generalize this connection to define g-canonical transformations. We
hope that the procedure may also help to define new g-deformed potentials from the known
ones.

In section 2 we review the known reiation between the undeformed Kepler and oscillator
problems. In section 3 we present g-deformations of two realizations of sI(2) (which is
the Lie algebra of SO(2, 1)) relevant to the Kepler and osciliator potentials. We define the
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g-canonical transformation connecting two realizations, We then give a general definition
of g-canonical transformation. In section 4 we define a ¢-Schridinger equation for a
Kepler-like potential from the g-Schridinger equation of the g-oscillator by a coordinate
change. Finally, we fix the energy spectrum of the g-oscillator, and find the ground-state
wavefunction and then obtain the energy spectrum and the ground-state wavefunction of
the g-deformed Kepler problem.

2. Review of the relations between Kepler and oscillator potentials

It is well known that SO(2, 1} is the dynamical symmetry group of the radial parts of the
Schridinger equations of the Kepler and the harmonic oscillator potentialst.

In one (space) dimension the phase-space realizations of the corresponding Lie algebra
51(2) relevant to the Kepler and the harmonic oscillator problems are given by

H=2px
X+=— 2x (1)

and
i
Lo = up, + 2
Ly = V22 @)

1 5
L_= —m Pu
with
px—xp=1 Pult —upy =1,
The above generators satisfy the usual commutation relations
{H, X.]=%2iX. (Xi, X 1=—~iH 3)
[Lo, Lal = %21l [Ly, L 1= —iLg. @
The eigenvalue equation for the Kepler Hamiltonian

HKWE(£+!12)\I’=E‘P
2 x
which is equivalent to
p’ 2
(2—5 - E) xb ="
is solved by diagonalizing the operator

1 /1
—(=x_+Ex.}.
Ji(u +)

On the other hand, the solution of the oscillator problem is simply obtained by
diagonalizing the operator

1 (1
-7 (;L.. + %;.asz+) .

i See for example [5].
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Classically (i.e. before the k-deformation) the Kepler and oscillator phase-space variables

are connected by the canonical transformation
— 2 - P
xX=u p= %% (5)

This type of canonical transformations is also employed for solving the H-atom. path integral
[6]. In fact, since the path integrations make use of the classical dynamical variables, the
canonical point transformations are routinely used to transform the path integral of a given
potential into a solvable form.

The relation between the Schrédinger equations corresponding to the one-dimensional
oscillator and Kepler type potentials is as follows.

The Schridinger equation of the one-dimensional oscillator

L& 5
(—@‘mﬁ'iﬂwu)w—ﬁ"ﬁ (6)
is transformed by the coordinate change suggested by (5)
into
1 & E/B 3/32u pw?
—_— == g
( 24t dx? + x x2 ¢ 3 ¢ ®
with
13
¥ = _ﬁ¢' 9

The energy E and the frequency o? of the oscillator play the role of the coupling constant
B2 and the energy Ex of the Kepler problem:

E _w _ a2
E._4(2n+1)— B 10y
Ex = —puw?/8. (11)

Equation (8) is equivalent to the one-dimensional Kepler problem with an extra potential
barrier —(3/32u)/x? or to the two-dimensional Kepler problem with ‘angular momentusm’

ps = —3/16.
If we obtain @ from (10) as
482
= - 12
o(f) =~ T (12}
and substitute it into (11), we obtain the Kepler energy
2up?
= — 3
Ex =~y iy 13

3. g-canonpical transformation between the Kepler and oscillator realizations of sl,(2)

3.1. g-deformation of the Kepler realization

To g-deform the algebra of the generators (1), we prefer to g-deform the commutation
relation between p and x (we use the same notation for the g-deformed and undeformed
objects):

xp —gpx = —i/q (14)



2398 0 F Dayi and I H Duru

but keep the functional forms of H and X. the same as the forms given in (1), The
g-deformed commutation relations are then given by [7]

HX_—gX_H = -2iygX-

1 1
HX, — ~X.H =2i— X 15)
g% At (

X, X_ —g*X_X, = :2-',/5(1 +g)H.

Note that after rescaling the above generators;

L WIETED

Ja

and setting g = r2 one arrives at
HX_~r*¥_H=-rX_
rPHX, ~X.H=rX, (16)
X X —-r*X_ X, =rH

which is Witten’s second deformation of sI(2) [8).

Xz H - 2H

3.2. g-deformation of the oscillator realization

We would like to g-deform the generators given in (2), which are relevant to the oscillator
problem, in a consistent manner with the deformation of the Kepler realization (1).
We define the g-deformed commutation relation of p, and u as
Upy —~ '\/Epuu = ib{g) a7

and fix b(g) by requiring that the commutation relations of the g-deformed algebra of the
generators (2) to be the same as (15). We rescale Lo and L.:
a(l + .47} eh

=gt k7 [8@(1+q>] g
with

g LEVDU+4)

243

and fix b(g) as

1
b=~} (1 + ——) .
: NG
The g-deformed algebra then becomes
LoL_ —gqL_Ly= —2i/gL_

1 1
Lol —~LyLo=2i—L (18}
g Nz +

—i
LyL-—g°L Ly= -2‘\/51-(1 + g) Lo

which is the same as the s1,(2) algebra of the Kepler problem (15).
Note that before g-deformation, s{(2) algebra (4} admits three different choices for Lg:

1
L0=upu+"

i 1
3 Ly = p,u — 5 Ly= E(upu + puu). (19
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In the g-deformed case, however, if we require the generators to be independent of g (except
an overall factor), the ordering degeneracy in (19) is removed, that is, Lo can only take the
form given in (2).

3.3. g-canonical transformation

Let us introduce a transformation similar to £3):

v _ {23 N, 1,1
x—(E)—(l_l_ﬁ)u p="Lu'p.. (20)
Then, the g-commutation relation (14) yields
1 +"ﬁ 4pu — qu=' puui?) = ~i/G @

which is consistent with (17). Indeed, by virtue of (17) the above commutation relation
becomes

q . ,
— b = —
1+ﬁ(upu VG puu +ibg) = ~ig
which is again equal to (17).
Now, we are ready to define the g-canonical transformation.

Definition. We wish to keep the phase-space realizations of the g-deformed generators to
be formally the same as the undeformed generators of the dynamical symmetry group. We
then define the transformation x, p — &, p, to be the g-deformed cancnical transformation
if the following two conditions are satisfied.

(i) Algebras generated by the realizations X;(x, p} and L;(u, p,} are the same,

(ii) The g-commutation relations between p and x, and p, and u are preserved.

In accordance with the above definition, we conclude that (20) is a g-canonical
transformation.

By rescaling the g-cancnical variables p, x and p,. u as

(x, p) — ¢ Y4, p) (, pu) = +/ |Bl/ /3 (4, )

and setting

qg—>q7"

the g-commutators (14) and (21) become
px —qgixp =i (22)
Pult — qup, =1 (23)

In the rest of this paper these g-commutation relations will be vsed.

There is another definition of the g-deformed canonical transformation [4]: phase-space
coordinates are transformed under the condition that the ¢-commutators remain invariant.
However, our condition in the definition of the g-canonical transformation is to obtain, in
a suitable limit, the updeformed mappings connecting different potentials which possess
the same dynamical symmetry. Thus, our definition of the g-canonical transformation is
dynamics-dependent, i.e. the basic g-commutators are potential-dependent (22) and (23).
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4. g-canonical transformation from g-oscillator Schridinger equation to g-Kepler
problem

Introduce the g-deformed derivative Dy(u) [9):

_ f — figu)
Do) f (@) = == @4
In terms of this definition one can show that
Dy () f{w)g(u)} = Dylu) f (g () + flqu)Dy(u)g(u}). (25)

Since the g-deformed derivative Dg{u) satisfies
Dyl —quD (u) =1

we can set
Pu =1Dg(w)

which is consistent with (23).

In terms of this g-differential realization one can obtain the g-deformed Schrédinger
equation for the g-oscillator:

1 I 1

(—ED‘?(M) + 3 @pcp(u) - EEq) P () =0 (26}

where
b=—g*

cg() = Jqu w, = [w], = g (27)
Obviously, the choice (27) is not unigue}. The conditions to be satisfied are

‘;1_&:} calu) =u ;Enl @y = .
We adopt the change of variable suggested by (20)

i = JE. (28)
The g-derivative D, (1) transforms as

Dy(u) = (1 + ¢)/x D (x). (29)
D2 (x) satisfies

Dp(x)x — g*xDp(x) =1 (30)

hence in accordance with {22) it can be identified with —ip. Therefore, (28) and (29) are
equivalent to the g-canonical transformation (20). The g-Schrodinger equation (26) then
becomes

[—-51!;(1 +gPxDh() = 5-(1 + DD + 5 -Twllgx ~ %Eq] 6,)=0 @D
with
¢y (1) = Pg(Vx). (32)
To remove the term linear in Dy(x) in (31) we introduce the ansatz
$q(x) = %@y (x). (33)

f For an example see [10] and the references given therein.
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Choosing
_ In(3—-¢)/2)
2ing
and by multiplying (31) from the left by 1/(1 + g)%x, we obtain
=12 (2¢* —2¢ =3)/8ug* (1 + 9)*  E;/2(1+4g)* plolig
[ED‘I’(X) - 2 - p ]wq(x) Y5k Pg(x)
(34)

which is the g-deformed Schrodinger equation of the Kepler potential with an extra potential
barriert.

The g-oscillator energy E; is dependent on @ and g. From the identification of the
coupling constant

_p=E, (35)

we can solve w in terms of 8 and ¢, as w(8, g). Hence, in terms of the solutions of the
g-Schrédinger equation for g-oscillator (26) we can obtain the solutions of

-1 2/2(1 + g)? 2 - 2g — 3)/8ug?(l +¢)*
where
_ quloB. g)
B = i+ 4D

is the g-deformed analogue of the energy spectrum of the Kepler problem.

5. Energy spectrum and ground-state wavefunctions

A general solution of the ¢-Schridinger equation of the g-deformed oscillator (26) is not
known. We fix the energy spectrum to be of the conventional form [2]:

I-—- qm(2n+l)
Epw=[w@n+ D], = =g (38)
Substituting the above energy spectrum into (33) we obtain
1—[(1 - )(1 + 2 ]lnq/2(2n+l)
(B, ) =~ L) . 39)
The energy spectrum (37) of the g-Kepler problem then becomes
— Lk 2.1ing/2(2n+1312
Egp = ——= {1 —[(1 — g)}(1 ? . 40
0 = 5oz (1= (= 1+ 7] } (40)

‘We would now like to build the ground-state wavefunction of the g-oscillator. With
this aim we introduce

eq(zz)—1+2( 24 q;‘?)z @

n=1

which is defined to satisfy
D,(2)e, (%) = 2z¢,(z%).

+ For a study of the g-deformed H-atom in a manner unrelated to the g-oscillator, see [11],
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Hence, the equation for the ground state of the g-oscillator

1
(—EDS(V) + %u[w}gaﬂ) V) = el ¥ 20 (42)
possesses the solution
- 0 _ __i 1- qm 2)
wq(u)—e,,( m l_qu . 43)

By introducing the above definition into (32) and using (33) we obtain the ground-state
wavefunction of the g-Kepler problem:

1 1—g4%
R0 =5 E) = 1 (5 s @

which corresponds to the epergy Egp.
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